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Abstract 

Natural genetic diversity provides a powerful tool to study the complex interrelationship between 

metabolism and growth. Profiling of metabolic traits combined with network-based and 

statistical analyses allow the comparison of conditions and identification of sets of traits that 

predict biomass. However, it often remains unclear why a particular set of metabolites is linked 

with biomass, and to what extent the predictive model is applicable beyond a particular growth 

condition. A panel of 97 genetically-diverse Arabidopsis accessions was grown in near-optimal 

C and N supply, restricted C supply and restricted N supply and analyzed for biomass and 54 

metabolic traits. Correlation-based metabolic networks were generated from the genotype-

dependent variation in each condition to reveal sets of metabolites that show coordinated 

changes across accessions. The networks were largely specific for a single growth condition. 

PLS regression from metabolic traits allowed prediction of biomass within and, slightly more 

weakly, across conditions (cross-validated Pearson correlations in the range 0.27-0.58 and 0.21-

0.51; p-values in the range <0.001-<0.13, and <0.001-<0.023, respectively). Metabolic traits that 

correlate with growth or have a high weighting in the PLS regression were mainly condition-

specific, and often related to the resource that restricts growth under that condition. Linear mixed 

model analysis using the combined metabolic traits from all growth conditions as an input 

indicated that inclusion of random effects for the conditions improves predictions of biomass. 

Thus, robust prediction of biomass across a range of conditions requires condition-specific 

measurement of metabolic traits to take account of environment-dependent changes of the 

underlying networks.  
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Introduction 

 

Plant biomass is the ultimate output of the interplay between metabolism and the cellular and 

developmental programs that control allocation (Poorter and Nagel 2000; Hermans et al 2006; 

Poorter 2011) and cell and organ growth (Krizek et al. 2009; Gonzales et al., 2009). A predictive 

understanding of these complex relationships would open up new perspectives in crop 

improvement. Given that an increase in the rate of growth must be underpinned by changes in 

metabolism, it should be possible to identify metabolic states that are associated with higher 

growth rates. One way to characterize metabolic states would be to measure fluxes. However, 

most flux measurements are in fact estimates, based on fitting labeling patterns of metabolites to 

a selected metabolic model. This is technically challenging in multicellular life forms like higher 

plants (Zamboni et al., 2011). Further, such estimates would need to be very precise because 

small changes in flux can result in large changes in biomass; plant growth is exponential with a 

typical increase in biomass of 10-25% per day, so a relatively small difference in fluxes and the 

momentary rate of growth will lead within 1-2 weeks to a large difference in biomass (Poorter 

1989; Stitt and Zeeman, 2012). A complementary approach is to identify metabolic traits, such as 

the levels of metabolites, which are associated with higher rates of growth and biomass 

formation. The attractiveness of this approach has been enhanced by the development of 

increasingly powerful platforms to measure metabolite levels and sophisticated tools to analyze 

the resulting data sets (Lisec et al., 2006; Fernie et al., 2011; Saito and Masuda 2010).  

Metabolite profiling of large populations of Arabidopsis natural accessions or inbred lines and 

the application of multivariate analysis tools such as canonical correlation analysis (CCA) and 

partial least squares (PLS) regression has allowed the identification of descriptor sets of 

metabolites that are predictive of biomass (Meyer et al., 2007; Sulpice et al., 2009; Steinfath et 

al., 2010a; Cuadros-Inostroza et al., 2010; Carreno-Quintera et al., 2012) as well as physiological 

traits like freezing tolerance (Korn et al., 2010) and herbivore resistance (Kleibenstein 2012; 

Züst et al., 2012). The advantage of surveying a wide range of metabolites is underlined by the 

fact that multivariate analysis allows predictions to be made from data matrices in which no 

individual metabolite significantly correlates with biomass (Meyer et al., 2007). This approach 

was recently extended to hybrid vigor. The relative density of networks based on correlations 
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extracted from metabolite profiles in Arabidopsis is modified in plants that show a strong degree 

of heterosis (Meyer et al., 2012). Further, metabolite profiles measured in parents allow 

prediction of hybrid vigor in their progeny both in Arabidopsis (Steinfath et al., 2010b) and 

maize (Reidelsheimer et al., 2012). In an analogous approach, robotized platforms can be used to 

profile large numbers of enzyme and search for relations between their maximum activities and 

growth (Sulpice et al., 2010).  

This top-down approach nevertheless suffers from two major weaknesses. First, a statistical 

relationship between a set of metabolites and growth does not provide functional insights into 

how metabolism determines the rate of growth. Functional interpretation is compromised 

because the complexity of metabolic networks in primary metabolism makes it difficult to draw 

inferences about fluxes from changes in metabolite levels (Stitt et al. 2010; Sulpice et al., 2010; 

Fernie and Stitt, 2012), by the fact that current metabolite profiles only cover a small fraction of 

the total metabolome (Saito and Masuda 2010) and by the likelihood that many connections 

between metabolism and growth may be mediated by signaling pathways that impinge on 

physiological or developmental processes (LeClere et al., 2010; Lilley et al., 2012). The, 

occurrence of a correlation between biomass and individual metabolites or linear combinations 

of metabolites also does not imply causality. Such correlations might arise if a given 

combination of metabolic traits supports increased biomass formation, but also if increased 

biomass formation resulted in a corresponding change in metabolite levels, Secondly, levels of 

metabolites in primary metabolism are dramatically influenced by the environment (Hannah et 

al., 2010; Caldana et al., 2011; Obata and Fernie 2012) including the irradiance regime (Gibon et 

al., 2006; 2009; Brautigam et al., 2009; Jankanpaa et al., 2012) and the nitrogen regime (Tschoep 

et al., 2009; Kusano et al., 2011; Amiour et al., 2012). It is not yet clear if the same sets of 

metabolites are predictive of biomass across different growth conditions.  

Under short-day conditions biomass is strongly and negatively correlated with starch content at 

dusk and with the total protein content per unit fresh weight (FW) in a panel of Arabidopsis 

accessions (Sulpice et al., 2009). Multivariate data analysis using PLS revealed that biomass, 

starch and protein are predicted by overlapping sets of metabolites indicating that starch and 

protein concentration are integrative metabolic traits that capture information about the levels of 

many low molecular weight metabolites and are closely linked to biomass formation. Starch is a 
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transient carbon (C) store, which accumulates in leaves during the day and is remobilized to 

support metabolism and growth at night (Smith and Stitt, 2007; Stitt and Zeeman, 2012). A 

negative correlation between biomass and starch levels at dusk implies that faster-growing 

accessions convert C more efficiently to biomass, at least during the night. A negative correlation 

between protein concentration and biomass will result in a larger leaf area per unit of invested 

protein and hence absorption of more light per plant. This finding is consistent with comparative 

studies of different species, where there is often a negative correlation between leaf area mass 

(dry weight per unit leaf area) and the growth rate, especially in limiting irradiance (Poorter and 

Nagel 2000; Poorter et al., 2009). Furthermore, as protein synthesis is an energetically costly 

process (Piques et al., 2009; Raven 2012), it is possible that the lower protein concentration 

might contribute to the observed increased efficiency of C use. Subsequently, Sulpice et al. 

(2010) showed that large accessions invested a large proportion of their protein in enzymes of 

photosynthesis. This will allow photosynthetic capacity per unit leaf area to be maintained 

irrespective of the fact that the total leaf protein concentration decreases.  

The studies of Sulpice et al. (2009; 2010) were carried out in short day conditions where growth 

is limited by C (Gibon et al., 2009). Plant growth is also often restricted by the supply of 

nutrients, especially nitrogen (N) (Poorter and Nagel 2000; Krapp et al., 2005; Hirel et al. 2007; 

Xu et al., 2012). In the following experiments, we profiled metabolites and enzyme activities in 

the same set of accessions in conditions where N was limiting for growth (Tschoep et al., 2009) 

and in conditions where N was saturating and C was close to saturating for growth. These data 

were combined with our previously published data for short day conditions, and analyzed to 

identify which, if any, features of the relationships and connectivity between metabolic traits and 

growth are shared across different growth conditions. 

Results 

Experimental design 

In earlier studies, we established growth protocols for the reference accession Col0 in which a 

decreased N or C supply lead to compensatory changes in metabolism and a mild and sustained 

decrease in growth rate: (i) Growth with a full nutrient supply in a 12 h photoperiod (12hHN) 

allows near to maximal growth rates of Col0, and increasing the photoperiod does not lead to a 
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major further stimulation of growth (Gibon et al., 2009: Supplemental Figure SI). Longer 

photoperiods were avoided because they lead to early induction of flowering. (ii) A low-N 

growth regime (12hLN) was established under which there was a 20-25% decrease in the relative 

growth rate and a ~50% decrease in biomass after 29-35 days, compared to 12hHN (Tschoep et 

al., 2009). Protein levels were hardly altered and some amino acids even increased, revealing that 

metabolism and growth have adjusted in a coordinated manner to the decreased N supply. (iii) 

Similarly, in the 8 h photoperiod used by Sulpice et al. (2009, 20101) there was a ~30% decrease 

in the relative growth rate compared to a 12h photoperiod (Supplemental Table SII). Starch 

turnover was adjusted such that starch was almost but not completely exhausted at the end of the 

night, C was available throughout the 24 h cycle, and C-starvation marker genes were not 

induced until after a short extension of the night (Gibon et al., 2009; Usadel et al., 2008, 

reviewed in Stitt and Zeeman 2012). 

A panel of 97 Arabidopsis accessions selected to maximize genotypic and geographic variation 

and biomass variation (Sulpice et al., 2009; 2010) was grown with an optimal supply of N in a 

12h/12h light/dark regime (12hHN) and a suboptimal supply of nitrogen in a 12h/12h light/dark 

regime (12hLN) (Tschoep et al., 2009). Sets of plants from both growth conditions were 

analyzed for rosette biomass and the levels of metabolites and enzyme activities at dusk. The 

resulting data was combined with published data for the same accessions grown in an 8h/16h 

light/dark regime to more strongly limit growth by the C supply (8hHN; Sulpice et al., 2009; 

Sulpice et al., 2010). The combined dataset included information about rosette biomass and 54 

metabolic traits in three growth conditions. The metabolic traits included the three structural 

components (protein, chlorophyll a chlorophyll b), the major transitory C store starch, 43 low 

molecular weight metabolites, including a range of sugars, amino acids, organics acids and other 

metabolites, and maximum activities of eight enzymes from central C and N metabolism (for a 

list of the metabolic traits and abbreviations see Supplemental Table SI). As measurements of 

nitrate, ornithine and spermidine were not available for the published 8hHN dataset, random 

numbers were introduced for these traits in the calculations of condition-specific correlation 

matrices. However, these traits were not used in the PLS and mixed model analyses.  

Biomass involves an interaction between accession and growth condition 
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Biomass differed between the 97 accessions by 3.1-fold, 2.8-fold and 4.2-fold in 12hHN, 12hLH 

and 8hHN, respectively, relative to the accession with the lowest biomass in that growth regime 

(Figure 1A-B, Supplemental Table SI). The impact of low-N and low-C differed between 

accessions, with some accessions showing a >70% decrease in biomass and others showing no 

decrease (Figure 1A-B). Accessions that had a large biomass in 12hHN tended to show a marked 

decrease in biomass in C-limiting or N-limiting conditions, while many of the accessions that 

had a small biomass in 12hHN showed little or no further decrease in C-limiting or N-limiting 

conditions. When individual accessions are inspected, some show a marked decrease in biomass 

in low-C and low-N conditions, some maintain biomass in low-C and low-N conditions, and 

others are especially sensitive to low-C (Mh1, Nok2, Lov5) or low-N (Bur0, Dijon5, Old1) (see 

Supplemental Table SI). Small sets of accessions ranked high (Bsch2, Da112, Dra0, Mt-0, Wei1) 

or low (Ang0, Bla11, Je-54, Pyl-1, RRS-10, TAMM-2) for biomass in all three conditions 

(Figure 1B). Overall, pairwise scatter plots revealed significant positive correlation (R = 0.47; p 

= 1.19e-06) between biomass in 8hHN and 12hHN, and weaker relationships between biomass at 

8hHN and 12LN (R = 0.31; p = 0.001) and biomass in 12hHN and 12hLN (R = 0.28; p = 0.0046) 

(Figure 1C). 

Thus, the main trends are three-fold: (i) subsets of accessions produce higher or lower biomass 

than others in all three conditions, (ii) many accessions that produce high biomass in high-N and 

high-C conditions tend to show a larger decrease in biomass when N or C is decreased and (iii) 

many individual accessions respond differently to low N and low C.  

Metabolic traits are subject to environmental and genotypic variation  

The absolute levels of structural components, metabolites and enzymes are provided in 

Supplemental Table I. ANOVA showed that all structural and metabolic traits except succinate 

showed highly significant changes (p < 0.0001) in the growth condition term (Supplemental 

Table SII). Significant traits in the accession term included biomass, starch, protein (all p 

<0.0001) and many metabolites (including: fructose, glucose, malate, myo-inositol, proline, 

threonine and nicotinic acid at p <0.0001 and sucrose, raffinose, total amino acids and many 

individual amino acids at p <0.05) and enzyme activities (including: NR, PEPCx, AGPase and 

NAD-GlDH at p <0.0001 and GS and NAD-MDH at p <0.05).  
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Principle components analysis (PCA) generated three distinct groups corresponding to the three 

growth conditions (Figure 2A, Supplemental Table SIII). The major principle component (PC1, 

41.3% of total variance) separated C-limited (8hHN) and N-limited (12hLN) conditions, with 

near-optimal conditions (12hHN) in an intermediate position. Principle component 2 (PC2; 

14.3%) separated near-optimal conditions from the two limiting conditions. When axes are 

chosen that reflect the variance captured by each PC, the 97 accessions formed a fairly compact 

group in near-optimal conditions and a slightly more spread-out group, especially in PC1, in low-

C and low-N conditions. In PC1, positive weightings were found for myo-inositol and traits 

related to nitrate assimilation (nitrate reductase activity, nitrate), ammonium assimilation 

(GOGAT) and organic acid metabolism (PEP carboxylase, malate, fumarate) and negative 

weightings were found for protein, sucrose, total amino acids and several minor amino acids. In 

PC2, positive weightings were found for GlDH activity, several sugars (sucrose, glucose, 

fructose), spermidine and ornithine, and negative weightings for shikimic acid, chlorophyll, 

starch, glutamate and nicotinic acid.   

Figure 2B (see Supplemental Table SIV for details) summarizes the changes of individual 

metabolic traits in 12hLN and 8hHN compared to 12hHN. Some metabolic traits showed 

consistent changes across all 97 accessions in low-N. This included an increase of sucrose, 

several amino acids (e.g., leucine, isoleucine, lysine), urea, 4-aminobutyrate and NAD-GlDH 

activity, and a decrease in raffinose, myo-inositol, glycine, proline, spermidine, shikimate, 

malate, fumarate, dehydroascorbate, nitrate and nitrate reductase activity. Nevertheless, the 

extent of the change varied. Some traits showed large variation between accessions, with an 

increase in some and a decrease in others (e.g., maltose, trehalose, alanine, glutamate, 

asparagine, threonate). As previously reported for the reference accession Col0 (Tschoep et al., 

2009) there was, perhaps against expectations, a slight but consistent increase in the protein 

concentration in 12hLN compared to 12hHN. This, and the maintenance or increase in most 

amino acids, shows that all accessions adjust to compensate for the decrease in N supply.  

A different set of metabolic traits showed consistent changes across all accessions in low-C. This 

included an increase in sucrose, glucose, fructose, alanine and dehydroascorbate levels and 

GOGAT, PEPCx and NAD-GlDH activities, and a decrease of chlorophyll, several amino acids 

(including asparate, glutamate, phenylalanine, asparagine, glutamine, arginine), shikimate and 
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nicotinic acid. As previously reported for the reference accession Col0 (Gibon et al., 2009, 

Hannemann et al., 2009) there was a slight but consistent decrease in protein in all accessions in 

8hHN compared to 12hHN. The decrease in the protein concentration and the levels of many 

amino acids reflects the strong dependence of N metabolism on the C supply (Nunes-Nesi et al., 

2010). As in the previous comparison, many metabolites showed quite varied changes between 

12hHN and 8hHN, again pointing to genotypic variation in the response to the growth condition.  

The coefficient of variation (CV, the standard deviation divided by the mean) was estimated to 

provide insights which metabolic traits show the largest genetic variation in a given growth 

condition (Supplemental Figure 2A). The average CV of all metabolic traits in 8hHN, 12hHN 

and 12hLN was 34, 33 and 31%, respectively. CV was generally low for structural components 

and higher for low molecular weight metabolites. Protein, Chla, Chlb, starch (CV<10%), 

sucrose, total amino acids, shikimate and most enzymes (<20%) had a low CV in all three 

conditions, while maltose, trehalose, raffinose, glutamine, asparagine, arginine and proline had a 

high CV in all conditions. Some metabolic traits showed a high CV in one condition, for 

example nitrate had a high CV in 12hLN. This may be because nitrate accumulates to high levels 

in N-replete conditions, but is used for growth in low N (see below).  

Correlations between individual metabolites and biomass in each growth condition 

We next investigated if the same or different individual metabolic traits correlate to biomass in 

the three growth conditions. Biomass-metabolite trait correlations (Spearman correlation 

coefficient) that were significant at a false discovery (FD) rate  <5% test are listed in Table I (for 

a full list, see Supplemental Table SV).  

There was a highly significant negative correlation of starch with biomass in 8hHN (R = -0.54) 

(see also Sulpice et al., 2009) and 12hHN (R = -0.49), and a weaker non-significant negative 

correlation in 12hLN (R = -0.33). The weakening of the negative correlation between biomass 

and starch in 12hLN is consistent with the hypothesis that allocation of C to transitory starch 

plays an especially important role when C limits growth. Alanine, valine and succinate were also 

negatively and significantly correlated with growth in all three conditions.   

Protein showed a highly significant correlation with biomass in 8hHN (R = -0.39; see Sulpice et 

al., 2009) that became weaker in 12hHN (R = -0.30) and was not significant in 12hLN (R = -
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0.014) (Table I, see Supplemental Figure S3 for scatter plots of biomass against starch and 

protein). This is in agreement earlier reports that the negative relation between biomass and 

protein observed in short photoperiod conditions is lost when the photoperiod is longer than 12h 

(Hannemann et al., 2008). This negative correlation may be related to a possible link in low-C 

conditions between efficient use of C and increased biomass formation, possibly because N 

assimilation and protein synthesis represents a major cost for growth (Piques et al., 2009; 

Amthor 2010).  

Sucrose, isoleucine, shikimic acid, malate and 4-hydroxyproline were negatively and 

significantly correlated with growth in both 12hHN and 12hLN, while aspartate, glutamate and 

glycine were negatively correlated with growth in both 12hHN and 8hHN, and raffinose was 

negatively and significantly correlated with growth in both 12hLN and 8hHN.  

Other correlations were restricted to one growth condition. In 12HN, biomass was negatively 

correlated with xylose, tryptophan, and PEPC activity, and positively with spermidine. In 

12hLN, biomass was negatively correlated to maltose, trehalose, myo-inositol, nitrate, leucine, 

threonate and nitrate reductase activity, and positively correlated to glutamic acid and 

asparagine. Nitrate is the major source of inorganic nitrogen and is assimilated via nitrate 

reductase, while asparagine is a major store for N. In 8hHN, biomass was negatively correlated 

with total amino acids, several individual amino acids including asparagine, dehydroascorrbate 

and putrescine and positively correlated with PEPC and NAD-GlDH activity. Asparagine 

accumulates and NAD-GlDH activity is induced in C starvation (Melo-Oliviera et al., 1996; 

Gibon et al., 2004; Mayashita and Good 2008; Gibon et al., 2009). Some metabolic traits were 

negatively correlated with growth in one condition, and positively in another (glutamate, 

asparagine, PEPCx activity).  

Comparison of metabolic networks in the three growth conditions 

We next analyzed connectivity between metabolic traits. To this end, matrices were generated 

from the variation in metabolic traits across 97 accessions in each growth condition to reveal 

which traits are subject to coordinated changes between accessions in a given growth condition 

(Supplemental Table VI).  
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Of a total of 1683 trait pairs, significant correlations at 10%, 5% and 1% FDR were found for 

493, 303 and 293 trait pairs in 12hHN, for 493, 261 and 129 trait pairs in 12hLN and for 347, 

261 and 129 trait pairs in 8hHN, respectively. The vast majority of the correlations were positive. 

This resembles earlier reports of high connectivity between metabolic traits in panels of 

cultivars, accessions or inbred lines (Carrari et al., 2006; Meyer et al., 2007; Schauer et al., 2008; 

Keurentjes et al., 2008; Sulpice et al., 2009; 2010; Keurentjes et al., 2008; Meyer et al., 2012).  

A total of 893, 737 and 434 trait pairs showed a significant correlation in at least one condition at 

10%, 5% and 1% FDR, respectively. These numbers are much higher than those for any single 

condition, indicating that there is considerable non-overlap between the correlation matrices in 

the three growth conditions. The RV coefficient can be used to compare matrices in high-

dimensional data analysis studies (Robert and Escoufier 1976; Abdi 2007). It is a measure of the 

similarity between two matrices and varies between +1 (if the two compared matrices are 

identical) and zero (if the two matrices are completely different). The RV coefficients (Figure 

3A) were between 0.35 and 0.26, which are rather low values, confirming that the metabolic 

networks are condition-dependent. The p-values were nonetheless significant, indicating there 

are some robustly shared features.  

Figure 3B provides a visual overview of the correlation matrix in each condition (for original 

data and the full matrices see Supplemental Table SI). Color coding is used to distinguish 

positive and negative correlations, and to denote significance at p <0.01, p<0.001 and p<0.0001. 

Some general features were conserved across all growth conditions: firstly, there were many 

more positive correlations than negative correlations and secondly, whilst there were many 

correlations between metabolites and many correlations between enzymes, there were relatively 

few correlations between enzymes and metabolites (see also Sulpice et al., 2010). However, 

closer inspection reveals that many correlations were condition-dependent. Indeed, the 12hHN 

dataset showed a relatively low connectivity between metabolites while enzymes were strongly 

correlated. In 12hLN correlations between metabolites were stronger, especially between amino 

acids and between organic acids. Nitrate assimilation is closely linked with organic acid 

synthesis, because organic acids act as counter-anions for nitrate and provide C skeletons for the 

synthesis of amino acids (Nunes-Nesi et al., 2010, Xu et al., 2012). In 8hHN, the matrix is 

dominated by positive correlations between amino acids and positive correlations between 
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enzymes. The positive correlations between amino acids reveals that the decrease in the levels of 

different amino acid levels noted above (Figure 2B) occurs in a coordinated manner and is larger 

in some accession than in others. 

The extent of overlap of individual links (correlations) in the three correlation matrices is further 

explored in Figure 3C-D. Of the links that are significant at FD<0.01, only 19 were shared across 

all three growth conditions. These were restricted to metabolites that are immediately adjacent to 

each other in metabolic pathways or have very similar functionalities (glucose and fructose; 

aspartate and glutamate; the three basic amino acids lysine, asparagine and arginine, the three 

aliphatic amino acids valine, leucine, isoleucine and aminobutyric acid; aspartate, arginine, 

proline and 4-hydroxyproline), two closely adjacent enzymes that are involved in malate 

formation (PEPC, NADH-MDH), and the three structural components (protein, Chla, Chlb) 

(Supplemental Table SVI).  

Testing for shared links at FDR <1% may result in false negatives because traits pairs that are 

significant in one growth condition may lie slightly below this stringent threshold in another. We 

therefore investigated how many conserved links are found for trait pairs that show a correlation 

at FDR <0.01 in at least one growth condition and a more relaxed significance level of FDR 

<10% for the other two conditions (Figure 3D). This analysis revealed that up to 83 (4.9% of all 

possible) links are conserved in all three conditions. The additional shared links include sucrose 

with protein, amino acids with Chla and Chlb, further pairs of amino acids, and a set of enzymes 

involved in starch and nitrogen metabolism (AGPase, GS, PEPC, NAD-MDH).  

We also tested for links that were conserved in two of the three growth conditions. At the 

FD<0.01 level, another 39, 19 and 32 pairwise correlations were significant in the 12hHN vs. 

12hLN, 12hHN vs. 8hHN and 12LN vs. 8hHN comparison, respectively, rising to 115, 74 and 72 

when the criteria were relaxed, as discussed above. We also asked for selected metabolic traits if 

the variation between accessions was conserved across different growth conditions. Pairwise 

plots revealed a weak but significant agreement for starch (R = 0.30, p = 0.05) and protein (R = 

0.35, p = 0.001) when 8hHN was compared to 12hHN, and a non-significant correlation when 

12hHN was compared to 12hLN (starch: R = 0.16, p = 0.12; protein: R = 0.15, p = 0.15). 

(Supplemental Figure S4).  
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Altogether these results point to a strong impact of the growth condition on the links in networks 

extracted from metabolic profiles. While there are a small proportion of conserved links, these 

are mainly for metabolites or enzymes that are closely related with respect to pathway topology 

or trait function.  

Partial least squares regression of biomass, starch and protein on other metabolic traits 

As already noted, some individual metabolic traits correlate with biomass (Table 1). Predictive 

power can be increased by using multivariate analysis to predict biomass from a linear 

combination of a set of low-molecular-weight metabolites (Meyer et al., 2007; Sulpice et al., 

2009). Therefore, we investigated whether multivariate analysis reveals shared features in the 

network linking metabolic traits and biomass formation that are not apparent at the level of pair-

wise comparisons.  

In data sets like ours, where the number of predictors (52) is lower than the number of accessions 

(97), the predictive power of linear models can be improved by dimensionality-reduction 

methods like PLS regression. PLS identifies combinations of the original input traits (also termed 

variables or predictors) that have the maximum covariance with the output trait of interest. These 

orthogonal combinations of input traits, referred to as latent variables, are then used to predict 

the output trait. Sulpice et al. (2009) previously found for Arabidopsis accession growing in short 

day conditions that biomass, starch levels and protein concentration are correlated, and that each 

is predicted by a similar combination of low molecular weight metabolites. We repeated this 

analysis for all three growth conditions. The idea of PLS is to provide models of high predictive 

power while selecting a small number of latent variables, which might correspond to a reduced 

number of metabolic traits in the model. Selection of the number of latent variables was 

performed based on minimization of the residual mean squared prediction error after Leave-One-

Out (LOO) cross validation. The predictive power of the model was evaluated in a second round 

of cross validation by determining the correlation between the predicted values and the 

respective response variable with the previously determined fixed number of latent variables; 

significance was evaluated by permutation of the data 5000 times (see Materials and Methods for 

details). Shuffling was conducted to allow consideration of permutations specific for a metabolic 

trait. The use of two separate rounds of cross-validation for robust estimation of the number of 
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latent variables and for evaluation of the predicting power of the model reduces the possibility of 

over-fitting.   

In each growth condition, PLS regression using metabolite levels as an input allowed a 

significant prediction of biomass (Pearson correlation 0.36, 0.58, and 0.27, p-values < 0.05 for 

12hHN, 12hLN, and 8hHN, respectively) and starch (Pearson correlation 0.67, 0.39, and 0.23, p-

values < 0.05 for 12hHN, 12hLN, and 8hHN, respectively). It also allowed a significant 

prediction of protein concentration in 12hHN and 12hLN (Pearson correlation of 0.46 and 0.57, 

respectively, p-value > 0.05) but not in 8hHN (Table II, bold area, Supplemental Table SVII). 

The predictive power was improved compared to individual metabolites (Table I).  

We also asked whether metabolite profiles measured in one growth condition allow prediction of 

biomass, starch or protein in a different growth condition. Whilst almost all PLS regressions 

were significant (except for the prediction of protein in 8hHN by metabolic traits from any 

condition), the cross-validated correlations were generally smaller (Table II). For significant 

regressions, the range and average of p-values was 0.001-0.003 and 0.013 for within-growth 

condition comparisons, and 0.001–0.030 and 0.023 for cross-growth condition comparisons, 

respectively.  

We also analyzed two additional scenarios—in the first, we conducted PLS on the means of the 

traits across all three conditions, while in the second, we employed PLS on a combination of the 

three data sets (‘Mean’ and ‘All’, respectively, in Table II). More specifically, in the ‘Mean’ 

scenario, we used the mean input traits across the three conditions to build a PLS regression on 

the mean output traits across the three conditions; in the ‘All’ scenario, we conducted PLS 

analysis on the concatenated data matrices from the three conditions. Using the mean of the traits 

over the three conditions in the PLS analysis, we found that all regressions are significant and of 

greater predictive power than the average power of condition-specific PLS. This gain was even 

greater when we used all three data sets (‘All’). However, although similar observations with 

much greater correlation values were obtained using the combined data sets, these regressions 

were based on a much larger number of latent variables, especially when we combined the data 

sets (as many as 32 from 52 available). Altogether, these findings suggest that PLS regression on 

metabolites to predict output traits like biomass and starch may be specific and more robust for 

comparisons within a given growth condition than for comparison across conditions.  
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The importance of individual input traits (variables) in the linear combination is given by the 

variable importance in the projection (VIP; Chong and Jung, 2005). The VIP for each individual 

metabolic trait as input in each growth condition is provided in Supplemental Table SVII. We 

next investigated the correlation between the VIP of the input traits from the PLS regressions on 

the pairs of output traits. This analysis led to two main conclusions. First, there was close 

agreement between the VIP of metabolic input traits in the prediction of the three output traits in 

12hHN (p < 0.001 in all pairwise comparisons of biomass, starch and protein) (Table III). The 

agreement was lower under 12hLN (especially for the comparison protein vs. biomass, p 

=0.0.17) and still weaker in 8hHN, when there was good agreement between biomass and protein 

(p < 0.0001) but not between biomass and starch (p = 0.059) or starch and protein (p = 0.28). The 

latter differs from a previous report (Sulpice et al., 2009; see Discussion). Second, different 

metabolic traits were important in the PLS regression in different conditions. (assessments are 

based on VIP > 1). Taking the PLS regressions on biomass as an example, in 12hHN xylose, 

several central amino acids (glutamine, alanine, aspartate, glycine), all three aromatic amino 

acids (phenylalanine, tryptophan, tyrosine), proline, hydroxyproline, malate and succinate had a 

high VIP, whilst in 8hHN raffinose, a similar set of central amino acids (glutamine, glutamate, 

alanine, aspartate, glycine), all N-rich amino acids (lysine, asparagine, arginine), fumarate, 

threonate and putrescine had a high VIP, and in 12hLN raffinose, maltose, trehalose, erythritol, a 

different set of amino acids (alanine, asparagine, arginine), succinate, glycerate, hydroxyproline, 

dehydroascorbate, threonate, putrescine, and nitrate reductase activity had a high VIP for 

biomass. Some metabolic traits (e.g., alanine, hydroxyproline) were represented in all three 

conditions, others (e.g., proline, asparagine, arginine) in two conditions and many in only one 

condition With the exception of nitrate reductase, enzyme activities did not show high VIP. By 

comparing Table I and Supplemental Table SV, we observed that many of the metabolic traits 

with a high VIP show significant correlations with biomass in that condition. Indeed, the 

correlation between the VIP in the regression for biomass and the Spearman correlation 

coefficients of individual metabolic traits and biomass, with values of 0.65, 0.72 and 0.42 in 

12hHN, 12hLN and 8hHN, respectively, provide statistical support for this observation.  

Relation between biomass and nitrate and total N content in plants growing with a 

restricted N supply 
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We next asked whether nitrate or other metabolic traits related to N adopt a more important role 

as a predictor for biomass in low-N conditions. These analyses were limited to 12hHN and 

12hLN because values for nitrate were not available for the published 8hHN study. Nitrate levels 

were higher in 12hHN, where they typically accounted for about 20% of the N in the rosette, 

than in 12hLN (Figure 4A). Nitrate levels were negatively correlated to biomass in 12hLN but 

unrelated to biomass in 12hHN (Spearmans rank correlation coefficient, R = -0.5, p = 8e-06 and -

0.18, p = 0.18, respectively Table I, Figure 4A-B). Total N content was estimated by summing N 

in nitrate, protein, amino acids and chlorophyll. Total N content was similar in both 12hLN and 

12hHN, and was unrelated to biomass in both conditions (Figure 4A).  

As already noted, accessions that maintained a relatively high biomass in low-N tended to show 

only a small increase in biomass in high-N, whereas accessions that showed a relatively small 

biomass in low-N showed a large (>3-fold) increase in biomass in high-N (Figure 4C). The 

ability of plants to grow with a low N supply, sometimes termed Nitrogen Use Efficiency (NUE) 

can be divided into two components; the ability to produce more biomass per unit N in the plant, 

and the ability to obtain N from the soil (Moll, 1982). The total N concentration in the rosette 

was unrelated to the biomass difference between low-N and high-N (Figure 4D). The N content 

(mg N per rosette) was strongly related to the response of accession to N; accessions that 

maintained biomass in low N contained more N in the rosette than accessions that showed a large 

gain in biomass in high N (Figure 4E). These results imply that accessions differ in the extent to 

which they can acquire N from low-N soil, and that this is far more important for the response of 

biomass to N supply than changes in the N content of the rosette.  

Mixed model analysis 

The results presented in the previous sections were mainly based on per-condition PLS 

regressions without controlling for the effects of environmental conditions. This is usually 

referred to as by-group approach, where each group corresponds to a condition. A by-group 

approach does not detect relationships that are conserved across conditions, and may highlight 

very specific effects for the individual conditions. We therefore asked if a more generalizable 

model for each of the three output traits (i.e., biomass, starch, and protein) can be obtained by 

combining the data sets from the three conditions, using an approach based on linear mixed 

models. 
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Linear mixed models are a type of generalized linear mixed models (Breslow & Clayton 1993), 

which offer parsimonious ways to account for group level structure in data while simultaneously 

assessing effects within and across groups (i.e., conditions). In addition to individual level noise 

ε, linear mixed models allow for normally distributed group-level differences centered around 

the individual level parameters. Our analysis is based on a linear mixed model with random 

intercepts by condition (defined as a grouping factor), formulated as: 

��,���� � �� ���� log 
�,�
�

�	


� �� , 

�� � �� � ����� 

ε∼N(0, σε), βcond ~ N(0, σcond), βcond ⊥ ε 

In this model, the intercept (β´) is the sum of the ordinary intercept (i.e., the global mean, β0) and 

the adjustment based on the group (condition, βcond) for each of the three output traits. The 

adjustment is assumed to be normally distributed and centered around zero as well as orthogonal 

to the individual level noise ε. This adjustment is termed the random intercept because it adjusts 

the overall intercept to reflect a randomly distributed condition-specific intercept.  

Here we first ask whether we can remove the random intercept without sacrificing the power of 

the model. This is achieved by �-test (with degree of freedom (df) = 1) over the difference in 

deviance (defined as twice the log likelihood) between the model with a random intercept against 

the same model without a random per-condition intercept. This test aims at determining if the 

added number of parameters (due to the random intercepts) significantly improves the model 

quality. While inclusion of random intercepts increases the quality for the model of biomass (p-

value < 0.05), this is not the case for starch and protein concentration (Supplemental Table SIX). 

The random intercepts in case of a linear mixed model for biomass were 35.75, 2.21, and -37.96 

for the 12hHN, 12hLN, and 8hHN, respectively, indicating the condition-specificity. Moreover, 

analysis of deviance table reported that chlorophyll a, sucrose, myo-inositol, aspartate, glycine, 

serine, and nicotinic acid had significant coefficients in the regression for biomass at a 

significance level of 0.05. Whilst some of these metabolites (sucrose, glycine) had a significant 

correlation (Table 1) or a high VIP in the PLS regression on biomass (Supplemental Table SV) 
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in two of the growth conditions, others (e.g., serine, nicotinic acid) had not been uncovered in the 

previous analyses. This is due to the more important role of these metabolic traits in the 

generalized (cross-condition) model. Nevertheless, as for the PLS regressions, enzymes make 

only a weak contribution (none significant at p<0.05 and only one, GS, at p<0.1).  

We next tested if random effects for the slope of these seven significant metabolic traits improve 

the quality of the model for biomass. Indeed, �-test (df = 7) indicated that adding random 

slopes, presented in Supplementary Table IX, improves the predictive power of the model. 

Subsequent analysis of deviance table indicated that the combined effects (i.e., fixed and 

random) for sucrose and glycine are significant whilst alanine has a significant fixed effect (p < 

0.05, Supplementary Table SIX). Alanine was one of the very few metabolites that in all three 

growth conditions correlated significantly (p < 0.05) with biomass (Table I) and had a high VIP 

in the PLS regression on biomass (Supplemental Table SV).  

Discussion 

Whilst it can be anticipated that metabolism will affect growth and that this dependence should 

be reflected in the values of metabolic traits, this connection is often masked due to the 

complexity of the network that links metabolism with growth (Fernie and Stitt, 2012). Natural 

genetic diversity provides a powerful tool to analyze complex networks, because it allows the 

study of thousands of genetic perturbations that vary independently between different genotypes. 

Profiling of populations of Arabidopsis natural accessions or inbred lines and application of 

multivariate analysis tools has allowed sets of metabolites to be identified that are predictive of 

biomass (Meyer et al., 2007; Sulpice et al., 2009; Steinfath et al., 2010; Cuadros-Inostroza et al., 

2010; Carreno-Quintera et al., 2012) and in some cases has allowed hypotheses to be formulated 

with respect to which aspects of metabolism play a key role in the determination of growth 

(Sulpice et al., 2009; 2010). However, metabolite levels depend on the growth condition 

(Caldana et al., 2011; Obata and Fernie 2012, see Introduction for further references). We have 

investigated (i) whether metabolite profiles provide information that is predictive for biomass in 

three different growth conditions and (ii) whether the network connectivity is conserved or 

changes between growth conditions. To do this, a panel of 97 genetically-diverse Arabidopsis 

accessions was grown in three growth conditions; near-optimal C and N supply, restricted C 
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supply and restricted N supply. The growth protocols used to restrict C and N decreased biomass 

by, on average, about 2-fold compared to near-optimal C and N. This represents a small decrease 

in the rate of growth. Previous work in the reference accession Col0 has shown that Arabidopsis 

adjusts to these regimes to avoid an acute C-limitation (Gibon et al., 2009; Stitt and Zeeman 

2012) or N-limitation of metabolism and growth (Tschoep et al., 2009).  

The large genetic diversity in Arabidopsis for biomass is apparent with approximately 3-fold 

differences in biomass between the smallest and largest accessions in a given growth condition. 

Accessions vary in their response to the growth condition (Figure 1). Whilst there is a trend for 

accessions that are large in one condition to also be large in other conditions, this is modified by 

two further trends; firstly, accessions that develop a high biomass in near-optimal conditions 

show a larger decrease of biomass in limiting conditions and, secondly, many individual 

accessions show differing responses to low-C and low-N.  

Whilst there are no other published studies of the response of biomass to low C in Arabidopsis, 

three earlier studies used a much smaller but partly overlapping panel of accessions to study the 

response to low N (http://dbsgap.versailles.inra.fr/vnat/; North et al., 2009; Chardon et al. 2010; 

see Supplemental Table SX). The trend for accessions that produce a high biomass in high-N to 

show a larger decrease in biomass in low-N is visible in these earlier studies. However, detailed 

comparison is difficult because of differences in accession ranking for biomass. In high N 

conditions there is very good agreement between biomass in our study and the VNAT database 

(20 shared accessions, R = 0.69) and weak agreement with the study of Chardon et al. (2010) (18 

shared accessions, R = 0.23 due to two accession that show low biomass in our study and the 

VNAT database but have a high biomass in the study of Chardon et al., 2010). In low-N 

treatments the agreement between our data and that of the VNAT database and Chardon et al. 

(2010) breaks down (R = -0.03 and 0.07, respectively). This poor agreement may be due to 

different protocols in the low-N treatments. Whereas we used large pots containing soil with a 

high or a very low N content from the beginning of the experiment, earlier studies grew plants in 

small pots with sand and watered regularly with nutrient solution containing different amounts of 

N. In our growth protocol, N-restricted plants contain less nitrate and show a slower rate of 

growth but maintain rosette levels of amino acids and protein (Tschoep et al., 2009; see also 

Figures 2, 4 and Supplemental Table SI), whereas rosette N concentration decreased by 20-30% 



22 
 

in North et al. (2009) and Chardon et al. (2010). Further, while the variation in biomass is similar 

in high-N and low-N treatments in our growth protocol, in the other growth protocols there is 

less variation in biomass formation in low-N than in high-N treatments. Despite this variation 

between studies, our analysis confirms previous reports (Chardon et al., 2010, 2012) that Bur0 

shows a large response to nitrogen, reveals that this accession is relatively insensitive to low-C, 

and identifies further accessions that show a similar response (Dijon5, Old1). Our study also 

identifies accessions that show a reverse response, with a large decrease in biomass in low-C and 

maintain biomass in low-N conditions (Mh1, Nok2, Lov5).  

The response of metabolic traits is dominated by the growth condition (Figure 2) with low-C or 

low-N leading to marked and differing changes in many metabolic traits across all the 

accessions. There is nevertheless genetic variation for metabolic traits. This can be captured in 

each growth condition as a correlation matrix (Figure 3). These networks identify metabolic 

traits that are subject to coordinated changes between accessions in a given growth condition. 

The correlation matrices show some shared general features, in particular a predominance of 

positive correlations, and the presence of many correlations between metabolite levels, many 

correlations between enzyme activities and few correlations between metabolite levels and 

enzyme activities. As previously discussed (Sulpice et al., 2010), this may reflect the complexity 

of the network that links enzyme activities with metabolite levels. A small number of links are 

found in all three growth conditions, mainly between topologically adjacent or functionally 

similar metabolic traits. Nonetheless, the main feature emerging from our large study is that both 

the metabolic traits and the correlation network depend strongly on growth conditions. First, 

low-N and low-C lead to characteristic changes in metabolite levels that affect all accessions 

(Figure 2). In low-N this includes an increase in many amino acid levels, a decrease in organic 

acids and a decrease in nitrate reductase activity. In low-C, this includes an increase in sucrose 

and reducing sugars, a decrease in many amino acids with the exception of alanine which 

increases, and an increase in NAD-GlDH activity. Second, most of the individual links in the 

metabolic network are condition-specific (Figure 3). In low-N the correlation network is 

dominated by strong connectivity between amino acids and between organic acids, in low-C by 

strong connectivity between amino acids, and in near-optimal conditions by a less topologically-

defined response.  
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The growth condition modifies the relation between metabolic traits and biomass. A different set 

of individual metabolic traits correlate to biomass in each growth condition (Table I). While PLS 

regression allows a highly significant prediction of biomass in each growth condition and often 

between growth conditions, when these analyses are made within a given growth condition the 

statistical significance for the predictive power tends to be stronger and a smaller number of 

latent variables is required (Table II). Application of linear mixed models highlighted that the 

inclusion of random (condition-dependent) effects for the intercept in the regression increases the 

quality of the model for biomass, but not for starch and protein concentrations. This further 

supports the condition-specificity of biomass prediction that is suggested by the PLS regressions. 

Additional analysis suggested that the inclusion of random slopes for metabolic traits that have 

significant coefficients in the linear mixed models could further improve the quality of these 

models.  

A small number of individual metabolic traits are linked to biomass in all three growth 

conditions. For example, alanine correlated with biomass in all three growth conditions (Table I), 

had high VIP in PLS regressions on biomass in all conditions (Supplemental Table SVII) and, 

together with sucrose and glycine, was highlighted as important in the mixed linear model 

(Supplemental Table SIX). We previously reported that biomass is negatively correlated with 

starch and protein (Sulpice et al., 2009). This finding is confirmed for starch in all conditions 

used in the current study, and for protein in near-optimal and low-C conditions, but not in low-N 

(Table 1). We also reported that a similar set of metabolites have a high VIP in a PLS regression 

on all three traits and proposed that starch and protein concentration are integrative metabolic 

traits that capture information about the levels of many low molecular weight metabolites and are 

closely linked to biomass formation (Sulpice et al., 2009). This relationship with biomass is 

confirmed in near-optimal (12hHN) conditions for starch and for protein (p < 0.001), in low-N 

for starch (p < 0.05) but not for protein (p = 0.17) and in low-C condition for protein (p < 0.001) 

but not, or only very weakly, for starch (p = 0.059) (Table III). The analysis in Sulpice et al. 

(2009) was carried out in short day (low-C) conditions; hence, there is a discrepancy in this 

particular condition. This may be due to use of a more stringent procedure for selection of the 

number of latent variables and validation of prediction in the current study, and because the 

published 8hHN dataset was obtained using a weaker experimental design than that used to 

obtain the 12hHN data set in the current study (see Methods). 
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The metabolic traits that adopt a major role in the network linking metabolism and growth in a 

given growth condition are often closely related to the metabolic resource that limits growth in 

that condition. In short day (low-C) conditions, low starch is the most powerful single predictor 

of biomass (Table 1). Protein is also negatively correlated to biomass, as are many amino acids 

(Table I). Further, protein and many amino acids decrease in short day conditions (Table II). As 

outlined in the Introduction, in low-C conditions, low protein concentration may increase the 

efficiency with which resources are used to generate biomass, which in turn may explain why 

starch reserves can be decreased (Sulpice et al., 2009; 2010). The second most strongly 

correlating individual metabolic trait is a positive correlation with NADH-GlDH activity. NAD-

GlDH activity is induced by C starvation (Melo-Oliviera et al., 1996; Gibon et al., 2004; 

Mayashita and Good 2008). This prompts the hypothesis that large accessions, which contain 

less starch, operate with a lower margin of C than small accessions. When more C is available 

for growth in a 12h photoperiod (Gibon et al., 2009) the negative correlation between biomass 

and starch is retained, but the links to protein concentration, amino acid metabolism and NAD-

GlDH activity are weakened or abolished. This is consistent with the idea that this link is driven 

by metabolic adjustment to low C, and that there is variation between accessions for way this 

interaction is regulated (Table I, Figure 3)  

In contrast, in low-N conditions, the metabolic traits that correlate strongly with biomass include 

nitrate reductase activity and nitrate, with the latter being the most strongly correlating individual 

metabolic trait (Table I). A trivial explanation for the negative relation between biomass and 

nitrate would be that accessions with a larger biomass in low-N conditions exhaust nitrate; this, 

however, can be excluded because total nitrogen concentration was independent of accession 

biomass (Figure 4). A similar observation has been made in earlier studies with a small panel of 

Arabidopsis accessions (Chardon et al., 2010; 2012). Nitrate is typically taken up in the day and 

the night, but is mainly assimilated during the day when nitrate reductase is post-translationally 

activated and photosynthetic electron transport provides reducing equivalents of the reduction of 

nitrate and the subsequent reduction of nitrite (Lea et al., 2006; Lillo 2008). This results in a 

diurnal rhythm in which nitrate levels decrease in the light and recover during the night (Stitt and 

Krapp, 1999; Matt et al., 2001). The lower level of nitrate and higher activity of nitrate reductase 

at dusk in accessions that maintain a large biomass in low-N conditions is consistent with them 

assimilating more of the incoming nitrate during the day. Further, accessions that maintain a 
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larger biomass in low-N conditions absorb far more N from the soil (Figure 4). Earlier studies of 

small panels of Arabidopsis accessions indicate that differences in the root system may partly 

explain differences in N uptake (Loudet et al., 2005). It is possible that the lower rosette nitrate 

levels may promote root growth and N uptake, although more studies of root growth and 

transport activity will be needed to test this hypothesis. 

In conclusion, while metabolic traits can be used to predict biomass in different growth 

conditions, this will require collection of data for the metabolic input traits in each growth 

condition. The growth condition has a large impact on the values of metabolic traits, on 

connectivity between metabolic traits, and influences the connectivity between metabolism and 

growth. While metabolic traits determined in one growth condition allow prediction of biomass 

in other conditions, the analysis is more robust when full input and output trait data is available 

for all conditions under study. Application of linear mixed models also reveals a marked 

condition-effect on the biomass prediction, and reveals that prediction can be improved when 

metabolic input data in all conditions is used as part of the model. Based on the growth 

conditions related to C and N availability analyzed in our study, in a given condition metabolic 

traits related to the limiting resource can adopt a more central role in the network that connects 

metabolism and growth. This implies that there is substantial natural variation in Arabidopsis for 

adjustment of metabolism to improve growth in low C and low N conditions. This variation, 

however, means that environmental conditions must be taken into account when searching for 

individual metabolites or sets of metabolites that act as biomarkers, and may compromise 

attempts to make predictions about genotype performance between different growth conditions.  

Material and Methods 

Selection of the accessions and growth conditions 

Arabidopsis thaliana accessions used in this study were obtained from various sources as 

previously described (Sulpice et al., 2009; Sulpice et al., 2010). Geographical origin of the 

accessions is available at Vnat (http://dbsgap.versailles.inra.fr/vnat/). For the 8hHN plants were 

grown in multiple overlapping experiments as previously described (Sulpice et al., 2009; Sulpice 

et al., 2010). For the 12hHN and 12hLN treatments, plants were grown in large replicated 

experiments with all accessions. To eliminate effects due to seedling germination and 
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establishment, in all growth regimes seeds were germinated and grown for 7d with a 16h day 

length (irradiance 145 µmol m-2 s-1, , temperature 20°C in the light and 6°C at night, humidity 

75%) then in an 8-h-light/16-h dark regime for 7 days, (145 µmol m-2 s-1, temperatures and 

humidities of 20°C and 60% during the day and 16°C and 75% at night). At 14 d, plants of 

average sizes were transferred to 6 cm diameter pots (five plants per pot). In all experiments, the 

position of the pots containing individual accessions was randomized.  

For the 8hHN treatment the soil substrate was GS90 (composition: peat, clay, coconut fiber, 2 

g/L salt, 160 mg/L N, 190 mg/L P2O5, 230 mg/L K2O, pH 6, supplied by Werner Tantau Gmb & 

Co. KG) and vermiculite (Gebrueder Patzer) (Cross et al., 2006). For the 12hLN treatment the 

soil substrate was 50% (v/v) white peat (Gramoflor GmbH, Vechta, Germany) and 30% (v/v) 

fine and 20% (v/v) coarse grained vermiculite (AGRA – RHP, Kausek GmbH, Mittenwalde, 

Germany), fertilised with 260 mg K2HPO4, 396 mg GRANUKAL 85 (80% CaCO3 & 5% 

MgCO3 – Kreidewerke Dammann KG, Soehlde, Germany), 1.6 mg Fetrilon-Combi 

micronutrient fertilizer (BASFAG, Ludwigshafen, Germany) and 30 mL tap water per 100 mL 

pot (Tschoep et al., 2009), For the 12hHN treatment the soil substrate was identical to 12hLN,  

except that it was additionally supplemented with 90 mg solid NH4NO3 per 100ml pot. Prior to 

use, soils were stored for 2 weeks at 10 °C to allow homogenization of nutrients. At 21 days, 

plants were transferred to a controlled small growth chamber (145 μmol m-2 s-1, 20°C day and 

night) for 2 more weeks in either an 8 h photoperiod (8hHN) or a 12 h photoperiod (12hHN, 

12hLN). Plants were watered daily. Within each experiment, the position of the pots containing 

individual accessions was randomized. Harvests (five samples per accession, each consisting of 

three rosettes) were performed at the end of the light period. The entire sample was powdered 

under liquid nitrogen and stored at –80°C until its use.  

Enzyme and Metabolite Assays 

Chemicals were purchased as described (Gibon et al., 2004). Total protein, starch, glucose, 

fructose, sucrose, and total amino acids were assayed as described (Cross et al., 2006). Malate 

and fumarate were assayed as described (Nunes-Nesi et al., 2007). For enzyme measurements, 

aliquots of 20 mg frozen FW were extracted by vigorous mixing with extraction buffer (Nunes-

Nesi et al., 2007). AGPase, fumarase, GLDH, PEPC, INV, GOGAT, NR, and GS were assayed 

as described (Gibon et al., 2004b). NAD-MDH was assayed as described by Nunes-Nesi et al. 
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(2007). Metabolite extraction for GC-MS was performed as described previously (Schauer et al., 

2006).  

Derivatization and GC-MS analysis were performed as described previously (Lisec et al., 2006) 

starting from aliquots of 20 mg frozen FW. As measurements of nitrate, ornithine and spermidine 

were not available for the published 8hHN dataset, random numbers were introduced for these 

traits in the calculations of condition-specific correlation matrices. However, these were not used 

in the PLS and mixed model analyses. 

Statistical analysis 

PLS regression is a dimensionality-reduction method which aims at determining predictor 

combinations with maximum covariance with the response variable (Eriksson et al., 2001; Wold 

et al., 1966). The identified combinations, called latent variables, are used to predict the response 

variable. Selection of the number of latent variables was performed based on minimization of the 

residual mean squared prediction error after Leave-One-Out (LOO) cross-validation. The 

predicted vector was correlated with the measured values to assess the predictive power of the 

predictor variables with the fixed number of latent variables. The significance of the prediction 

power was evaluated by permutation test with 5000 permutations of the data. We note that in 

every permutation, each row of the data matrix, corresponding to the profile of a metabolic trait, 

was shuffled independently of the others. Such permutation strategy is intended to break 

correlations in pairs of metabolic traits while maintaining the range that is specific for each 

metabolic trait. Then, for each permutation, a PLS model with the pre-determined number if 

latent variables was built to predict the randomized response variable and a Pearson correlation 

between the permuted response variable and in LOO cross-validation. The 5000 random 

correlations are compared to the performance of the PLS model which was used to predict the 

true response variable. The predictors were ranked according to their importance in projection 

(VIP) (Chong and Jung, 2005). The VIP measure of a predictor estimates its contribution in the 

PLS regression. The predictors having VIP values greater than one are considered important for 

the PLS prediction of the response variable. All procedures were applied after log-scaling the 

metabolic profiles. Our computations were carried out using the R package pls (Mevik and 

Wehrens, 2007). For the analysis based on linear mixed models, we used the lmer function from 
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the R package lme4 (Bates and Maechler 2010), while analysis of deviance table was carried out 

with the Anova function from the R package car (Fox and Weisberg, 2011).  

The RV coefficient is a multivariate generalization of the squared Pearson correlation coefficient 

and provides a measure of the similarity between two squared symmetric positive semi-definite 

matrices and varies between +1 (two identical matrices) and zero (no similarity) (Robert and 

Escoufier 1976; Abdi 2007). It was calculated using the package http://CRAN.R-

project.org/package=FactoMineR. The coefficient of variation (CV) is defined as the ratio of the 

standard deviation to the mean of all mean values obtained for a trait/accession pair. 
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Figure 1. Biomass of 97 accessions in the three growth conditions. A panel of 97 Arabidopsis 

accessions was grown in a 12h photoperiod with high nitrogen (12hHN), a 12h photoperiod with 

low nitrogen (12hLN) and a 8 h photoperiod with high nitrogen (8hHN).(A) Biomass in each 

conditions the accessions are ordered on the x-axis according to their biomass in the control 

treatment (12hHN). (B) Three-dimensional plot of the biomass of each accession in the three 

growth conditions; accessions that have a high and low ranking for biomass in all three 

conditions are indicated by green and red symbols, respectively. (C) Spearmans correlation 

between biomass in the three growth conditions. The original data is given in Supplemental 

Table SI.  

 

Figure 2. Structural and metabolic traits. (A) Principle components analysis PCA based on z-

scores values for 97 accessions grown in three contrasting conditions (12hHN,   ;12hLN,     

;8hHN,  ) . In total, 58 traits were determined per accession. The full data set for each growth 

condition are given in Supplemental Table SI. VIP scores for the metabolic trait inputs are given 

in Supplemental Table SVII. (B) Heat maps of the metabolite changes under nitrogen deficiency 

(12hLN) or short days (8hHN) compared to control conditions (12hHN). Each square represents 

the log2 ratio of the metabolite level using false color scale. Regions of red or blue indicate the 

metabolite level is decreased or increased, respectively. The full data set for each growth 

condition as given in Supplemental Table SIV. 

 

Figure 3. Comparison of the correlation matrices for structural and metabolic traits in three 

growth conditions. Three separate networks were generated from the values of 50 metabolic 

traits, starch, protein and biomass in 97 Arabidopsis accessions grown in different growth 

conditions: 12hHN, 12hLN and 8hHN. (A) Analysis of the RV coefficient between the matrices. 

The lower left hand segment shows the RV coefficients and the upper right hand segment the p-

values. The RV coefficient values varies between varies between +1 (two identical matrices) and 

zero (no similarity). (B) Condensed heat map of correlation coefficients (Spearman R, FW basis) 

in the networks for 12hHN, 12hLN and 8hHN. The individual values are provided in 
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Supplemental Table SI.. Positive (blue) and negative (red) correlations are indicated at a level of 

p<0.01, <0.001 and <0.0001 (light, medium and dark, respectively. The order of traits is as in 

Supplemental Table SII. (C) Numbers of pairwise correlations between traits in one, two or all 

three growth conditions. The original matrices are provided in Supplemental Table SV. (D) 

Visualisation of the numbers of shared- and non-shared correlations (FD<0.01). The area of the 

circle depicts the number of shared correlations. The grey shell shows how overlap increases if 

FD is relaxed to FD<0.1 all except one of the shared growth conditions.  

 

Figure 4. N concentration and N content in accessions growing in low and optimal N 

supply. (A) Rosette biomass and total N in nitrate, protein, amino acids and chlorophyll (     ) 

and against N in nitrate (     ). Total N contents are calculated in Supplemental Table VIII. (B) 

Relation between nitrate concentration and rosette biomass in 12hLN; data in panel A is re-

plotted with a expanded y.-axis scale. (C-E) The x-axis ranks accessions according to their gain 

in biomass between low N and high-N growth conditions. The x-axis shows the values for a 

given accession for 12hHN (   ) and 12hLN  (  ). (C) Rosette biomass. (D) Summed N content in 

protein, amino acids, chlorophyll and nitrate. (E) Summed N content per rosette. 
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Supplemental Material  

 

Supplemental Table SI. Biomass, structural components, starch, low molecular weight 

metabolites and enzyme activities plus correlation matrices. Data are provided for 97 accessions 

grown optimal supply of nutrients and a 8h/16h light/dark regime and optimal supply of N 

(8hHN; Sulpice et al., 2009; Sulpice et al., 2010), a 12h/12h light/dark regime an optimal supply 

of N 12hHN) and a 12h/12h light/dark regime with suboptimal supply of N 12hLN), as well as 

the correlation matrices and for each condition. 

Supplemental Table SII. ANOVA analysis. .the original data are given in Supplemental Table 

SI 

Supplemental Table SIII.  Principle components analysis. 

Supplemental Table SIV. Heat map of changes in metabolic traits under low C and low N 

conditions compared to near optimal conditions. 

Supplemental Table SV. Correlation of individual metabolic traits with biomass. Values were 

determined by Speamans R. 

Supplemental Table SVI. Correlation matrices for metabolic traits in each of the three growth 

conditions  

Supplemental Table SVII. PLS regression for biomass, starch or protein concentration on low 

molecular weight metabolites in three growth conditions. The inputs are the levels of all 

measured metabolites in that growth condition. The outputs are biomass, starch or protein in that 

growth condition. The Table lists, for each growth condition and output, the values of R and p in 

cross validation, the VIP (value in the prediction) of each metabolite for a given output in a given 

growth condition.  

Supplemental Table SVIII. Calculation of nitrogen contents 

Supplemental Table SIX. Linear mixed models for biomass, starch, and protein concentration: 

analysis of deviance tables. The first three tables include the results (fixed effects and statistical 
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significance) with random intercept only, while the fourth table includes the findings for a mixed 

model with not only random intercept but also random slopes for seven metabolites (chlorophyll 

a, sucrose, myo-inositol, aspartate, glycine, serine, nicotinic acid) which were identified as 

having significant coefficients in the regression for biomass (see the first table herein). 

Supplemental Table SX. Comparison with published data for biomass in Arabidopsis 

accessions 

Supplemental Figure 1. Relation between photoperiod and biomass in Col0 wildtype. The 

plants were germinated and seedling set was as described in the Materials and Methods until 19 

days, when the plants were transferred to different photoperiods with a light intensity of 145 

μmol m-2 s-1, 20°C day and night. Light intensities were checked in each growth cabinet. Plants 

were harvested at 29 days to determine above-ground fresh weight. The results are the mean ±SD 

(N = 5 replicates, each of 5 plants).  

Supplemental Figure 2. Coefficient of variations (CV) for the metabolic traits analyzed 

between the accessions grown in a given growth condition (A) or averaged CV of all the 

accessions for the variation in metabolite amounts between 2 growth conditions (B). The full 

data sets for each growth condition are given in Supplemental Table SI.  

Supplemental Figure 3.  Relationship between biomass and selected metabolic traits in different 

growth conditions. The full data sets for each growth condition are given in Supplemental Table 

SI.  

Supplemental Figure 4.  Relationship between selected metabolic traits (starch, protein) in 

different growth conditions. The full data sets for each growth condition are given in 

Supplemental Table SI.  



Table I.  Spearman rank correlation coefficient between biomass and metabolic traits in 

different growth conditions. Adjusted p-values were calculated using the Benjamini-

Hochberg correction. This display summarises metabolites that correlated at p<0.05 in at 

least one growth condition. A full set of correlations is provided in Supplemental Table SV. 

NA = not available 

  

  

positive Negative 

<0.01     

<0.05     

  <0.1     

NA 

12hHN 12hLN 8hHN

protein -0.30 -0.14 -0.39

chl a -0.27 -0.14 -0.27

chl b -0.13 -0.29 -0.31

starch -0.49 -0.33 -0.54

sucrose -0.33 -0.30 -0.13

Maltose -0.05 -0.33 0.05

Trehalose -0.05 -0.50 -0.08

Raffinose -0.06 -0.36 -0.37

Inositol. myo -0.05 -0.28 0.16

Xylose -0.25 -0.09 -0.06

NO3 -0.18 -0.50 NA

AA -0.20 0.04 -0.33

Glutamic acid -0.25 0.20 -0.27

Aspartic acid -0.42 -0.12 -0.25

Alanine -0.32 -0.34 -0.26

Glycine -0.34 -0.16 -0.39

Arginine -0.07 0.13 -0.30

Asparagine -0.14 0.27 -0.24

Valine -0.33 -0.38 -0.34

Isoleucine -0.26 -0.33 -0.08

Leucine -0.04 -0.32 0.02

Proline -0.27 -0.14 -0.10

Phenylalanine -0.34 0.01 -0.14

Tryptophan -0.29 0.06 -0.18

Shikimic acid -0.31 -0.28 0.03

Benzoic acid -0.05 0.26 0.02

malate -0.29 -0.39 -0.07

fumarate -0.13 -0.33 -0.14

succinate -0.32 -0.46 -0.32

Glyceric acid -0.14 -0.42 -0.12

Proline. 4-hydroxy -0.30 -0.32 0.01

Putrescine -0.19 0.38 -0.26

Spermidine 0.28 0.17 NA

Threonate -0.06 -0.28 -0.11

Dehydroascorbate -0.06 -0.16 -0.26

NADGlDH -0.11 0.15 0.34

NR_Vmax -0.22 -0.31 -0.04

PEPCx -0.37 0.09 0.27



Table II.  Partial least squares (PLS) regression analysis of the relation between low 

molecular weight metabolites and biomass, starch level or protein concentration. PLS was 

performed using 52 metabolic traits from condition A as input and fresh weight (FW), starch 

or protein as output traits from condition B, for each of the nine combinations of conditions 

(A, B). The correlation between the predicted values and the response variables, denoted by 

R, was determined after cross-validated selection of the number of latent variables (n). The 

number of latent variables (n) and the p-values were determined in two successive and 

independent rounds of cross validation, the are determined by permutation test (see Materials 

and Methods).   

 

  12hHN 12hLN 8hHN Means across all 
three conditions 

All individual 
values across all 
three conditions  

  R / n p R / n  p R / n  p R / n p R / n p 

12hHN FW 0.36 / 1 0.002 0.26 / 1 0.006 0.28 / 1 0.002 0.45 / 1 0.001 0.73 / 3 0.001 

 Starch 0.67 / 1 0.001 0.47 / 1 0.001 0.68 / 1 0.001 0.61 / 2 0.001 0.77 / 31 0.001 

 Protein 0.46 / 1 0.001 0.34 / 1 0.001 0.46 / 1 0.001 0.57 / 3 0.001 0.94 / 32 0,001 

12hLN FW 0.51 / 1 0.001 0.58 / 1 0.001 0.51 / 1 0.001 

 Starch 0.35 / 1 0.001 0.39 / 1 0.001 0.36 / 3 0.001 

 Protein 0.45 / 1 0.001 0.57 / 2 0.001 0.34 / 1 0.002 

8hHN FW 0.27 / 1 0.003 0.21 / 1 0.023 0.27 / 1 0.013 

 Starch 0.26 / 1 0.006 0.05 / 2 0.302 0.23 / 1 0.023 

 Protein 0.13 / 1 0.102 0.17 / 1 0.057 0.17 / 1 0.072 

  



Table III.  Correlation between the VIP of metabolic traits in the PLS regression on 

biomass, starch and protein. The VIP of the metabolite traits in the PLS regressions on 

biomass, starch and protein concentration are provided in Supplemental Table SVII)  

 Correlation (R) between VIP of inputs in the PLS regression 

 Biomass 

and starch 

 Biomass 

and protein 

 Starch and 

protein 

 

 R p R p R p 

12hHN 0.81 0.000 0.43 0.001 0.65 0.000 

12hLN 0.28 0.042 0.19 0.172 0.53 0.000 

8hHN 0.26 0.059 0.55 0.000 0.15 0.278 

 

 

 



Figure 1. Biomass of 91 accessions in the three growth conditions. A panel of  92 Arabidopsis accessions 
was grown in a 12h photoperiod with high nitrogen (12hHN), a 12h photoperiod with low nitrogen (12hLN) 
and a 8 h  photoperiod with high nitrogen (8hHN).(A) Biomass in each conditions the accessions are ordered 
on the x-axis according to their biomass in the control treatment (12hHN). (B) Three-dimensional plot of the 
biomass of each accession in the three growth conditions; accessions that have a high and low ranking for 
biomass in all three conditions are indicated by green and red symbols, respectively.  (C) Correlation 
between biomass in the three growth conditions. The original data is given in supplemental Table SI, and 
scatter plots from which the regression coefficients were calculated in Supplemental Figure S1.  
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Figure 2. Structural and metabolic traits.  
 
(A) Principle components analysis PCA based on z-scores values for 92 accessions grown in three 
contrasting conditions (12hHN,   ;12hLN,     ;8hHN,  ) . In total, 58 traits were determined per 
accession. The full data set for each growth condition are given in Supplemental Table SI. VIP scores 
for the metabolic trait inputs are given in Supplemental Table SVII.  
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Figure 2B Heat maps of the metabolite changes under nitrogen deficiency (12hLN) or short days (8hHN) 
compared to control conditions (12hHN). Each square represents the log2 ratio of the metabolite level 
using false color scale. Regions of red or blue indicate the metabolite level is decreased or increased, 
respectively. The full data set for each growth condition as given in Supplemental Table SIV. 
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Figure 3. Comparison of the correlation matrices for structural and metabolic traits in three growth 
conditions. Three separate networks were generated from the values of 50 metabolic traits, starch, 
protein and biomass in 92 Arabidopsis accessions grown in different growth conditions: 12hHN, 12hLN 
and 8hHN.  

(A) Analysis of the RV coefficient between the matrices. The lower left hand segment shows the RV 
coefficients and the upper right hand segment the p-values. The RV coefficient values varies between 
varies between +1 (two identical matrices) and zero (no similarity).  

(B) Condensed heat map of correlation coefficients (Spearman R, FW basis)  in the networks for 
12hHN, 12hLN and 8hHN. The individual values are provided in Supplemental Table SI. Positive 
(blue) and negative (red) correlations are indicated at a level of p<0.01, <0.001 and <0.0001 (light, 
medium and dark, respectively. The order of traits is as in Supplemental Table SII.) 
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(C) Numbers of pairwise correlations between traits in one, two or all three growth conditions. The 
original matrices are provided in Supplemental Table SV.  
(D) Visualization of the numbers of shared- and non-shared correlations ( FD<0.01). The area of the 
circle depicts the number of shared correlations . The grey shell shows how overlap increases if FD is 
relaxed to FD<10% in all except one of the shared growth conditions.   

Figure 3 continued 
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Figure 4. A) Rosette biomass and total N in nitrate, protein, amino acids and chlorophyll (     ) and 
against N in nitrate (     ). Total N contents are calculated in Supplemental Table VIII. (B) Relation 
between nitrate concentration and rosette biomass in 12hLN; data in panel A is re-plotted  with a 
expanded y.-axis scale. (C-E) The x-axis ranks accessions according to their gain in biomass 
between low N and high-N growth conditions. The x-axis shows the values for a given accession 
for 12hHN (   ) and 12hLN  (  ). (C) Rosette biomass. (D) Summed N content in protein, amino 
acids, chlorophyll and nitrate. (E) Summed N content per rosette. 
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